Computer Security and Privacy

What is security?

- In the context of computers, security generally means three things:
 - Confidentiality
 - Access to systems or data is limited to authorized parties
 - Integrity
 - When you ask for data, you get the "right" data
 - Availability
 - The system or data is there when you want it
- A computing system is said to be secure if it has all three properties
 - Well, usually

Security and reliability

- Security has a lot to do with reliability
- A secure system is one you can rely on to (for example):
 - Keep your personal data confidential
 - Allow only authorized access or modifications to resources
 - Give you correct and meaningful results
 - Give you correct and meaningful results when you want them

What is privacy?

- There are many definitions of privacy
- A useful one: "informational self-determination"
 - This means that you get to control information about you
 - "Control" means many things:
 - Who gets to see it
 - Who gets to use it
 - What they can use it for
 - Who they can give it to
 - etc.

Example: PIPEDA

- PIPEDA (Personal Information Protection and Electronic Documents Act) is Canada's private-sector privacy legislation
- It lists ten Fair Information Principles companies have to abide by:
 - Be accountable
 - Identify the purpose of data collection
 - Obtain consent
 - Limit collection
 - Limit use, disclosure and retention
 - Be accurate
 - Use appropriate safeguards
 - Be open
 - Give individuals access
 - Provide recourse

Security vs. privacy

 Sometimes people place security and privacy as if they're opposing forces.

 Are they really? Do we have to give up one to get the other?

Who are the adversaries?

- Who's trying to mess with us?
- Various groups:
 - Murphy
 - Amateurs
 - "Script kiddies"
 - Crackers
 - Organised crime
 - Terrorists
- Which of these is the most serious threat today?

How secure should we make it?

- Principle of Easiest Penetration
 - "A system is only as strong as its weakest link"
 - The attacker will go after whatever part of the system is easiest for him, not most convenient for you.
 - In order to build secure systems, we need to learn how to think like an attacker!
 - How would you get private information from the US Social Security Administration database?
- Principle of Adequate Protection
 - "Security is economics"
 - Don't spend \$100,000 to protect a system that can only cause \$1000 in damage

Some terminology

Assets

- Things we might want to protect, such as:
 - Hardware
 - Software
 - Data

Vulnerabilities

- Weaknesses in a system that may be able to be exploited in order to cause loss or harm
- e.g., a file server that doesn't authenticate its users

Some terminology

Threats

- A loss or harm that might befall a system
- e.g., users' personal files may be revealed to the public
- There are four major categories of threats:
 - Interception
 - Interruption
 - Modification
 - Fabrication
- When we design a system, we need to state a threat model
 - This is the set of threats we are undertaking to defend against
 - Whom do we want to stop from doing what?

Some terminology

Attack

- An action which exploits a vulnerability
- e.g., telling the file server you are a different user in an attempt to read or modify their files

Control

- Removing or reducing a vulnerability
- You control a vulnerability to prevent an attack and block a threat.
- How would you control the file server vulnerability?
- Our goal: control vulnerabilities

Methods of defence

- How can we defend against a threat?
 - Prevent it: block the attack
 - Deter it: make the attack harder or more expensive
 - Deflect it: make yourself less attractive to attacker
 - Detect it: notice that attack is occurring (or has occurred)
 - Recover from it: mitigate the effects of the attack
- Often, we'll want to do many things to defend against the same threat
 - "Defence in depth"

Example of defence

- Threat: your car may get stolen
- How to defend?
 - Prevent: is it possible to absolutely prevent?
 - Deter: Store your car in a secure parking facility
 - Deflect: Use "The Club"
 - Detect: Car alarms, LoJack
 - Recover: Insurance

- Remember we may want to protect any of our assets
 - Hardware, software, data
- Many ways to do this; for example:
- Cryptography
 - Protecting data by making it unreadable to an attacker
 - Authenticating users with digital signatures
 - Authenticating transactions with cryptographic protocols
 - Ensuring the integrity of stored data
 - Aid customers' privacy by having their personal information automatically become unreadable after a certain length of time

Software controls

- Passwords and other forms of access control
- Operating systems separate users' actions from each other
- Virus scanners watch for some kinds of malware
- Development controls enforce quality measures on the original source code
- Personal firewalls that run on your desktop

- Hardware controls
 - (Not usually protection of the hardware itself, but rather using separate hardware to protect the system as a whole.)
 - Fingerprint readers
 - Smart tokens
 - Firewalls
 - Intrusion detection systems

- Physical controls
 - Protection of the hardware itself, as well as physical access to the console, storage media, etc.
 - Locks
 - Guards
 - Off-site backups
 - Don't put your data centre on a fault line in California

- Policies and procedures
 - Non-technical means can be used to protect against some classes of attack
 - If an employee connects his own Wi-fi access point to the internal company network, that can accidentally open the network to outside attack.
 - So don't allow the employee to do that!
 - Rules about changing passwords
 - Training in best security practices